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We propose a modified Josephson corner-junction experiment which can test whether the order parameter in
the iron pnictides changes sign between the electron and hole pockets of the Fermi surface.

DOI: 10.1103/PhysRevB.79.092502 PACS number�s�: 71.55.�i, 75.20.Hr, 71.27.�a

Iron pnictides represent the newest member of the class of
correlated materials in which superconductivity �SC�
emerges from doping an ordered state.1,2 One of the intrigu-
ing proposals for superconductivity in these mutiband sys-
tems is that spin fluctuations mediate electron pairing be-
tween different regions of the Fermi surface but with
different signs for the order parameter.3 In the unfolded Bril-
louin zone, the regions of the Fermi surface which are rel-
evant are the electron and hole pockets located at the M and
� points,4 respectively, as illustrated in Fig. 1�a�. The result
is a nodeless gap, denoted as s�, with a rough momentum
dependence of cos kx cos ky.

3 While the preponderance of the
experiments supports isotropic nodeless superconductivity4–6

in both the 1111 and 122 materials, the power-law behavior
of the spin-lattice relaxation rate T1

−1�T3 has been used as a
strong indication of line nodes.7 However, nodeless s� pair-
ing has recently been shown to also yield T3 behavior at high
temperatures.8 Fine tuning with disorder is necessary to ob-
tain the T3 dependence of 1 /T1 at low temperatures. Alterna-
tively, superconductivity with multiple gaps can also give
rise to such a deviation from the standard Bardeen-Cooper-
Schrieffer �BCS� exponential falloff of T1

−1. In fact, super-
conductivity in Ba0.6K0.4Fe2As2 and PrFeAsO0.89F0.11 is con-
sistent with at least two gaps with ratios of 2 and 3.2,
respectively. Hence, the complete consistency of s� pairing
with the experimental data is far from settled.

Nonetheless, given the novelty of the s� state, it is impor-
tant to definitively determine its relevance to the pnictides.
Although there are some proposals on phase-sensitive mea-
surements such as a three layer sandwich structure,9 they are
not direct probes of the order parameter phase. As phase-
sensitive measurements10 using Josephson interferometry
were pivotal in settling the question of the symmetry of the
order parameter in the cuprates, we focus here on whether or
not such a similar experiment can be performed to falsify the
claim that the order parameter in the pnictides has s� sym-
metry. Detecting an s� state in the pnictides poses a distinct
challenge from discerning the sign change in the dx2−y2 state
in the cuprates because the sign change occurs along the
crystal axes.10

Central to the design of any standard superconductor-
insulator-superconductor �SIS� junction oxide barrier is the
highly directional nature of the transport. Namely, the junc-
tion can only detect the order parameter in the direction per-
pendicular to the crystal face.10 It is for this reason that a
standard corner junction can be used to detect the sign
change of the dx2−y2 order parameter because the order pa-
rameter has a natural alignment along the crystal axes. In this

sense, detecting the s� state depicted in Fig. 1�b� poses a
distinct challenge because no such alignment of the order
parameter and the crystal axes is present. Consider an s� SC
and a conventional s-wave SC joined by a weak link. Let �0
and �1 be the magnitude of the order parameters at the M
and � points, respectively, in the iron-based superconductor.
The superconducting quantum interference device �SQUID�
design is shown in Fig. 1�b�. Let us consider the gap on the
M pocket which experimentally is less than �1=25 meV.11

A gap of this magnitude corresponds to a wave vector for the
center of mass of a Cooper pair emanating from the M

pocket that is less than Kc=meff�1 /�pF� 0.026
kF

�
meff

me
�� �

a0
�2,

where meff, me, a0�2.83 Å, pF, and kF are the effective
mass, electron mass, lattice constant, Fermi momentum, and
Fermi wave vector, respectively. This number is much
smaller than the wave vector Q= �� ,�� /a0, in the folded
Brillouin Zone, by a factor of 3 at least. In this case, regard-
less of the direction of the Cooper pairs, it is impossible to
choose the wave vector Kc of a Cooper pair emanating from
M so that the net wave vector Knet is perpendicular to the C
or D faces of the junction in Fig. 1�b�. However, this condi-
tion is easily met at face E which lies at an angle of 45° from
the horizontal. Such scattering of a Cooper pair from � to M
points requires Umklapp scattering as the net momentum
transfer is Q. By contrast, the order parameter associated
with � pocket in the folded zone can be sensed by all faces.
Taking this into account, we compute the associated critical
current for a SQUID joining surfaces C and D, D and D, or
D and E. For the former two, the critical current is given by

B

135o

C
D

E
θ=θ=θ=θ=

−∆−∆−∆−∆
1111 M

∆∆∆∆
0000

Q=(ππππ,ππππ)

Knet

SIS

ΓΓΓΓ

Kc

(a) (b)

FIG. 1. �Color online� Design of the SQUID junction to test
s�-wave superconductivity. �a� Fermi surface in the folded Bril-
louin zone to show the principle of design. �b� The SQUID design.
The left-hand side of the junction is an iron-based SC which is cut

on the �010� �E face�, �110� �D face�, and �11̄0� �C face� planes.
Any two of the planes are connected to a conventional s-wave SC
on the right-hand side through standard oxide-barrier SIS junctions
�Ref. 10�. The magnetic field is perpendicular to the plane.
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2�0 sin�� /�0� where �, �0 is the magnetic flux and flux
quantum. This is the standard s-wave result. However, for a
D-E SQUID, the situation is different; the critical current,

��0
2 + ��0 − �1�2 + 2�0��0 − �1�cos��/�0� , �1�

is governed by the magnitude and sign of the order param-
eter at the M and � points as depicted in Fig. 2. To recover
the standard s-wave result simply requires reversing the sign
of �1. All the possible interference patterns as a function of
� /�0 are shown in Fig. 2. For the 1111 pnictide material,
there are two hole pockets at the � point with �0= �6
+12� meV and two electron pockets at M point with �1
= �12+12� meV. This case corresponds to Fig. 2�c�.11 As all
the possible interference patterns differ substantially from
the standard s-wave result, this experimental design should
offer a definitive test of s� pairing in the pnictides.

Note added. After this paper was completed, a similar
idea was proposed by Mazin and Park �Ref. 12�. We offer
here a more complete explanation of why along the D face
only holes contribute the current, while along the E face both
electrons and holes do. Further, D-E has a � phase shift only
when the gap on electron Fermi surface is larger than the gap
on hole Fermi surface which is not mentioned in Ref. 12.
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FIG. 2. All possible interference pattern for different x values
where x is defined as �1=−x�0. �a� For junction connecting D-D or
C-D faces; �b�–�d� are all junction connecting D-E faces. �b� x
� �0,1�; �c� x� �1,	�; and �d� x� �−	 ,0�.
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